感应加热技术主要是利用电磁感应原理来对工件加热,它采用的是非接触式加热方式。由于感应加热过程中,能量的传递是以电磁波的形式进行的,所以受外界的干扰小,能量的扩散少,大幅度的提升了能量的利用,提高了加热的效率,使感应加热在钎焊行业、淬火行业、退火行业、金属熔炼热处理、机械制造、轻工及电子类的加工等现代工业生产里得到了广泛的应用。在实际应用中应该要依据负载等效参数随温度的变化和加热工艺的需要,随时对感应加热
目前,感应加热电源的功率调节方式可分为两大类:直流调功和逆变调功两大类。直流调功是对逆变器直流侧的输入电压进行调节,达到调节感应加热电源的输出功率的目的。直流调功主要有晶闸管相控整流调压调功和直流斩波调压调功两大类。逆变调功是指通过对逆变器开关管的控制,来实现输出功率的调节。
逆变调功常用移相脉冲宽度调制(PS-PWM)调功,脉冲频率调制(PFM)调功,脉冲密度(PDM)调功等方式。
晶闸管相控整流技术是指通过调节晶闸管的导通角,使其输出电压值连续可调,实现系统的功率调节,在感应加热系统中,一般都会采用三相桥式相控整流电路,如图1-1所示。这种调功方式已经很成熟,成本较低。但是,晶闸管相控整流调压电路在控制角较大的情况下,输入功率因数很低,输入电流波形为尖峰脉冲,谐波含量很高,对电网形成了较大的污染。而且晶闸管整流调压电路的EMI非常大,对周边的电气设备和自身的控制电路将产生较大干扰。因此,晶闸管相控整流电路一般应用在早期的感应加热系统中。
直流斩波调压调功是指在直流母线侧采用降压斩波电路,通过改变占空比D的大小来调节直流输出电压Ud,实现对输出功率的调节。图1-2所示为采用直流斩波调压调功的感应加热电源的主电路。
从图1-2中能够准确的看出,该调功方式选用二极管不可控整流电路,和以前的晶闸管相控整流电路相比提高了电网侧功率因数,减小了对电网的污染。但是Buck电路中的功率开关器件在接通和断开时,在其器件上同时存在电压和电流,损耗比较大,所以不适于应用在高频及大容量系统中。此外,由于感应加热电源要增加额外的斩波电路及其相应的控制回路,使得感应加热电源成本提高。
采用脉宽调制(PWM)调功方式的感应加热电源主电路如图1-3所示,其是通过调节逆变电路上开关管的一个周期内导通时间即改变其输出方波的占空比从而改变输出功率。这种方法等同普通开关电源的调制方法,调节线性好,范围大,但是不容易实现软开关。
移相脉冲宽度调制(PS-PWM)调功电路是通过改变电角度Φ调节输出电压,从而调节输出功率。这种调功方式是控制主电路中逆变器四个开关器件VT1~VT4驱动脉冲来实现的,如图1-4所示。
VT1,VT3不同时导通,VT1先导通,VT3后导通,两者相差电角度Φ,VT4,VT2分别滞后于VT1,VT3180O.通过调节电角度Φ。实现功率的连续调节,并有较宽的功率调节范围,并且开关器件损耗小。但是轻载时,电角度增大,输出电压脉冲宽度变小,输出电流变成近似三角波,谐波成分严重。还有正常工作时,该电路一定要通过锁相电路使逆变器工作在谐振状态,实现频率跟踪有一定难度,易发生失锁的现象。
脉冲频率调制方式的原理是通过改变逆变器输出的角频率,进而调节负载的等效输出阻抗的大小来实现输出功率的调节。当负载阻抗的R、L和C保持不变时,负载阻抗和逆变器的开关频率f有关,图1-5为串联谐振电路的负载频率特性。
由图1-5能够准确的看出:当 f = f0时,逆变器工作在串联谐振状态,输出功率最大;当频率低于或者高于谐振频率时,逆变器负载的等效阻抗变大,输出功率变小。PFM调功电路控制简单,易于调节,但是PFM调功方式中开关管工作在硬开关状态,损耗较大,功率因数低,效率低,所以不适应于高频的感应加热电源。
PDM调功方式的主电路与移相脉冲宽度调制(PS-PWM)调功方式的主电路相似,基本工作模式如图-6所示。VT1、VT3和VT2、VT4轮流驱动导通若干周期后,再封锁VT1、VT2栅极驱动信号若干周期,同时分别驱动VT3、VD4和VT4、VD3轮流导通,形成输出电流i的续流回路,以保证电路谐振工作。
PDM调功方式的优点是输出频率基本不变。能轻松实现功率开关器件的软开关,开关损耗小,功率因数接近于1,易于实现数字化控制,所以比较适合于高频感应加热电源的应用,但PDM调功方式属于有级调功,输出电流的波动比较大,尤其在轻载的情况下,将出现电流断续的情况,并且锁相有一定的难度。
从以上对各种常见的调功方式的分析,我们大家可以发现,每种调功方式都有自己的优缺点,现在人们对各种调功方式来进行改进,得到了很多新的调功方法,比如脉冲密度-移相(PDM-PSM)复合调制调功、复合脉冲密度(CPDM)调功等等。根据感应加热电源负载的真实的情况,我们最终选择最适合的调功方式。